
Computational model-based analysis of spatial navigation strategies under stress and uncertainty

using place, distance and border cells

BACKGROUND PLACE CELL-BASED MODEL

Stress facilitates learning & memory…

Or does it?
It depends on the type of learning & memory. 

Importantly, also on what we exactly mean by it!

Decision-making occurs during navigation and learning. 

It is widely studied in choice behaviors, but less well 

understood in natural and more continuous settings, 

especially under stress and uncertainty. This process 

could be investigated in rodent spatial navigation, 

which has been modeled with place-cell-based models. 

However, traditional models usually ignored detailed 

trajectories or kinematics. Here we extended a place 

cell-based reinforcement learning model to include 

detailed kinematics and used it to investigate the role of 

motivational stress in Morris Water Maze. We 

performed experiments with two strains of mice learning 

two versions of the task under different water 

temperatures: the task with a fixed platform location 

and the task where platform location varied randomly 

between two positions. Using computational modeling 

and parameter estimation, we were able to not only 

reproduce detailed mouse behaviors but also reveal 

computational correlates of temperature-based 

behavioral differences. Our findings provide insights 

into computational mechanisms underlying spatial 

navigation in mice and how various modulators 

influence it.

EXPERIMENTAL DESIGN AND BEHAVIORAL RESULTS

MODEL EXTENSIONS 

The position of the animal (state s(t))

is represented as a population activity 

of ‘place cells’ (PC):

PCs project to a population of 

‘action cells’ (AC, representing 

directions of movement φi in [0, 2π]):

Weights wij are initialized as uniformly distributed 

randoms from [0, Wmult] and decay at a rate Wdec at each 

time step. 

Weights are updated as to decrease the reward 

prediction error δ: δ = Reward(t) + γQt+1 – Qt, where γ 

is temporal reward discounting factor.

Action choice: matching law with exploitation factor β 

(=„log softmax“)

Eligibility trace keeps a (decaying) record of 

performed actions eij = λeij + ri
ac’ rj

pc, where λ is the 

eligibility trace decay rate.

Finally, weights are updated as follows: Δwij = α δ eij, 

where α is the learning rate.

In order to simulate realistic trajectories, acceleration 

(ac_const) is added at each step in the direction of the 

selected action. In addition, the existing velocity decays 

at each time step with multiplying it by Vdecay. 

Higher ac_const values represent more vigorous push in 

the selected direction. Higher Vdecay values suggest 

more inertia in movement and more difficulty to change 

directions, which may especially be needed during the 

search around the platform. Once the modeled mouse 

hits the wall, the normal component is reset to 0, but the 

tangential component is preserved.
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Acceleration is applied in the chosen direction and 

velocity decays with time based on acceleration. Then, 

movement is computed based on current velocity.

Performance measures (PM) (for each mouse and trial):

How do genetic strain, immediate temperature and 

previous temperature influence performance based 

on different measures?

We then extended the model to include a wall-distance-

based component, where spatial learning would be

guided not just by place information but also by a cue-

like signal, namely distance to the wall, which

reproduced mouse behavior in tasks with uncertain

platform positions better than place-cell-based

strategies alone.
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PARAMETER ESTIMATION

Based on that, we further implemented a more 

biologically plausible model that uses a combination 

of border (boundary) cells and place cells.

The border cells are the cells with receptive fields 

distributed close to the border of water maze. They are 

sensitive to the distance to the wall like DCs, but they 

have definite location of receptive field.
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We estimated best-fitting parameters of models with place and border cells in different experimental conditions and genetic strains of mice. First, we selected the least sensitive

parameters to be fixed across days/conditions, as all cannot be flexible: among them, crucially, the learning rate.

The achieved fits were good to excellent, reproducing differences in different variables between groups

- Swim distance (m)

- Latency to platform (s)

- Swim speed (m/s)

- Time %-s in the target quadrant, opposite 

quadrant, (or combined target + opposite quadrants in 

variable platform task) and the wall zone

- Mean turning angle
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Stress (18 vs. 26) improves immediate 

performance, but not so much memory

C57BL/6 mice trained at 26 

degrees perform much better 

when put to 22 deg water after 

the break than they ever did!

DBA/2 mice generally outperform C57BL/6 mice in the standard task, the opposite is true in the variable platform task

DBA/2 mice trained at 26 degrees struggle in the 

variable platform task, until they are put to 22 degrees

• Across tasks and strains, cold water 

consistently leads to increased 

exploitation of knowledge (higher 

beta). These differences mostly 

disappear once the mice are put to 22 

deg water after the break.

• DBA/2 mice performing the variable 

platform task in warm water have 

considerably higher inertia of their 

movement (high Vdecay), likely 

explaining their poor performance and 

high thigmotaxis in 26 deg water.

• C57BL/6 mice learning in warm 

water have considerably lower 

acceleration constants than other 

groups, suggesting that their 

performance vigour is reduced. This 

disappears when put to 22 deg water.

• YES, cold water stress improves 

learning, but mostly by modulating 

exploration-exploitation balance and 

performance vigour, not the learning 

rate per se. This may lead to somewhat 

more solid memory representations, 

but immediate effects are much 

stronger than long-term effects!

• REFERENCE: Luksys, Gerstner & 

Sandi, Nat. Neurosci. 2009
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